Trends in Systems Engineering Life Cycles

by Dr. E. G. Patterson Jr.

The essence of life cycle management is division of
resources (6). Kingsley Davis recognizes division of
labor as one of the fundamental characteristics of
socialized man (9). The division of tasks into sub-
tasks, the documentation of progress through inter-
mediate products: these are important concepts that
did not begin in abstraction, but in concrete prob-
lems. The essence of engineering is problem solving;
and divide-and-conquer strategies, process definition
and improvement, process modeling, and life cycle
management are all engineering methods that begin
by reducing complex challenges into tractable parts
and conclude by integrating the results.

The failures of some systems engineering efforts
have led some theoreticians to criticize or abandon
the traditional ways of dividing resources. The trend
is broad and can be seen in many areas. Life cycles
are criticized for many reasons. For example, the
concept that a requirements phase is self-contained,
self-supportive, and separable from other phases has
come under sharp attack both from academia and
industry. The deeply ingrained tradition in industry
that requirements must not dictate any given specif-
ic design is also coming into question. The justifica-
tion for this belief may be readily derived from our
basic activity model, shown in Figure 1.

Recognize

Synthesize Analyze

Figure 1. Engineering activity model.
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Each of the three orthogonal activities shown in
Figure 1 is necessary for successful systems engi-
neering. It is not clear, however, that separation in
time, separation by assignment to more than one
action team, or separation in terms of any other
resource based on the orthogonality of a process
model (that is to say, a life cycle) is effective in
reducing the engineering complexity problem. In
fact, the opposite seems to be true. In the natural
course of raising and resolving problems, it is much
more efficient to resolve problems when and where
they arise. The inefficiencies associated with follow-
ing each life cycle step to completion before begin-
ning the next step tend to result in a loss of informa-
tion, and this tendency is exacerbated in proportion
not only to the size of the engineering problem but
also to the size of the engineering resources (5). This
is a major obstacle in engineering big systems.

A solution based upon partitioning big systems into
a number of small systems reduces the inefficiency
inherent in life cycle-based approaches. However,
this solution does not answer the emerging genera-
tion of systems engineering theorists who maintain
that life cycle activities are dependent upon each
other in a non-trivial way that neither a waterfall
model, nor even a spiral model in its full generality,
can adequately address. This suggests that special-
ties, such as requirements engineering, are undesir-
able, unless their scope of activity spans the entire
life cycle: definition, development, and deployment.
An alternate way to view this suggestion is that the
number of specialties is effectively reduced to one:
systems engineering. The systems engineer is ever-
cognizant that a system must be specified, built, test-
ed and deployed in terms not only of its internal
characteristics, but also in terms of its environment.
Thus, the job of integrating becomes a global con-
cern that subsumes all of the steps in the life cycle.



Process Improvement

The trend away from the use of prescribed standard
life cycles, while widespread in the private sector,
has only recently begun to affect government acqui-
sitions. The U.S. Department of Defense no longer
requires the use of MIL-STD-499a for the acquisi-
tion of systems. Moreover, the new software devel-
opment standard, MIL-STD-498 (10), after years of
development, has been canceled without replace-
ment. Other military standards are receiving similar
treatment. The idea is that developers have their own
processes that are specific to their own organiza-
tions. This change in emphasis should not be viewed
as freedom from the use of a disciplined approach,
but rather freedom to customize the approach to opti-
mize quality attributes based upon variable factors in
the software development organization.

The wide acceptance of ISO 9000 as an internation-
al standard is actually a trend away from standard-
ized process models. The basic philosophy of
ISO 9000 has been summarized as: “Say what you
do; then do what you say” (14,23). ISO 9000 certifi-
cation (15) is a goal to which many companies aspire
in order to gain competitive advantage. Certification
demonstrates to potential customers the capability of
a vendor to control the processes that determine the
acceptability of the product or service being market-
ed.

The Software Engineering Institute has developed a
method of process assessment and improvement in
the software development arena, known as the
Capability Maturity Model (13,22,27). As the name
suggests, the model is based upon the existence of a
documented and dependable process that an organi-
zation can use with predictable results to develop
software products. In effect, the details of the process
are of little interest, as long as the process is repeat-
able.

The CMM model was adapted from the five-level
model of Crosby (8) to software development by
Humphrey. The five levels of the CMM model are:

1. The initial level: ad hoc methods may achieve
success through heroic efforts; little quality

management, no discernible process; nothing is
repeatable except, perhaps, the intensity of
heroic efforts; results are unpredictable;

2. The repeatable level: successes may be repeated
for similar applications. Thus, a repeatable
process is discovered which is measurable
against prior efforts;

3. The defined level: claims to have understood,
measured and specified a repeatable process
with predictable cost and schedule
characteristics;

4. The managed maturity level: comprehensive
process measurements enable interactive risk
management;

5. The optimization level: continuous process
improvement for lasting quality. According to
Sage (25), “There is much double loop learning,
and this further supports this highest level of
process maturity. Risk management is highly
proactive, and there is interactive and reactive
controls and measurements.”

The CMM helps software project management to
select appropriate strategies for process improve-
ment by examination and assessment of its level of
maturity, according to a set of criteria; diagnosis of
problems in the organization’s process; and prescrip-
tion of approaches to cure the problem by continuous
improvement.

Even though managers may be seasoned veterans,
fully knowledgeable about the problems and pitfalls
in the engineering process, they may disagree with
each other on how to cope with problems as they
occur. If agreement is difficult to produce in an orga-
nization, the resultant lack of focus is taxing on orga-
nizational resources and may endanger the product.
Thus the management of an organization must be
greater than the sum of its managers by providing
strategies for management to follow and tools for
management to utilize. Such strategies and tools will
be the result of previous organizational successes
and incremental improvements over time, and mea-
sured by a level of maturity. The Capability Maturity



Model (CMM), developed at the Software
Engineering Institute (SEI) at Carnegie Mellon
University, provides a framework that is partitioned
by such levels of maturity. Although the CMM was
developed to measure the maturity of software
development processes, the ideas upon which it is
based are quite general, applying well to systems
engineering and to such processes as software acqui-
sition management, and even the software engineer’s
own personal software process (12).

In an analysis of the CMM, it is helpful to look close-
ly at the five levels or stages in quality maturity
attributable to Crosby (8) in order to see how one
level builds upon another. They are:

1. Uncertainty: confusion, lack of commitment.
“Management has no knowledge of quality at the
strategic process level and, at best, views opera-
tional level quality control inspections of fin-
ished products as the only way to achieve quali-

ty.”

Awakening: management wakes up and realizes
that quality is missing. “Statistical quality control
teams will conduct inspections whenever prob-
lems develop.”

Enlightenment: management decides to utilize a
formal quality improvement process. “The cost
of quality is first identified at this stage of devel-
opment which is the beginning of operational
level quality assurance.”

Wisdom: management has a systematized under-
standing of quality costs. “Quality related issues
are generally handled satisfactorily in what is
emerging as strategic and process oriented quali-
ty assurance and management.”

Certainty: management knows why it has no
problems with quality.

In each of these environments, a particular kind of
person is required. There is a shift in focus from one
type of key individual to another as we move from
one CMM level to the next. The progression seems
to be, roughly, as follows:
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Heroes. Necessary for success in a relatively
unstructured process, the hero is able to rise
above the chaos and complete a product.

Artists. Building on the brilliance of the heroes,
the artists begin to bring order, resulting through
repetition in a codifiable process.

Craftsmen. These are the people who follow the
process, learning from experience handed down
from previous successes.

Master craftsmen. These are the people who are
experts in their respective facets of the develop-
ment process, who understand and appreciate
nuances of process and their relationship to qual-

ity.

Research scientists. Finally, master craftsmen
appear, who, through experiential learning and
attention to process integration, are able to fine
tune the process, improving the overall process
by changing steps in the process while avoiding
harmful side effects.

The characteristics of the organizational culture are
directly related to organizational learning. The orga-
nization appears to depend primarily upon two fac-
tors: (1) the people who compose the organization,
and (2) the environment internal to the organization.
Of course, a case may be made for including the
external environment, since the overall success of
the organization (and its probability of survival) are
directly related to its adaptation to both the market
and technological factors. Some of the organization-
al characteristics may be organized in five stages,
following the CMM model, as follows:

1. Heroes and supporters. Dependent upon the
ability of heroes to rise above the chaos, the orga-
nization grows up around the activities of each
hero, each of whom may require low-level sup-
port services. The hero’s processes are largely
self-contained, and very loosely coupled with
other heroes’ processes. While there are very
efficient aspects of this kind of organization
(viz., the hero’s own activities), there is no over-
all efficiency induced by integration of activities



into an overall process. Thus, at this CMM level,
there are really two levels of workers: heroes and
others.

Artist colony. Through mutual respect and atten-
tion to the successful practices of the previous
generation of heroes, these people work together
to recreate the successes of the past, creating new
processes along the way. Management begins to
be able to track progress.

Professional  cooperative  organization.
Through long service and attention to process,
master craftsmen have emerged, creating more
hierarchical structure in the organization as less
experienced individuals are able to learn from
more experienced craftsmen. There now exists
the concept of “the way to do the job,” a concept
that must be adhered to measurably.
Management’s role is to control adherence to the
process by defining metrics and implementing a
metrics program.

Society of professionals. At this point, the orga-
nization is mature enough to be able to receive
from its individual members meaningful sugges-
tions on how to improve selected parts of its
process and to implement them in the overall
process. This is largely a shift in the organiza-
tion’s ability to learn, of becoming a “learning
organization.”

Institute of professionals. The organization is
now so mature that it is able to look continuous-
ly for ways to improve processes. Outside influ-
ences are no longer repelled, but are welcomed
and evaluated.

In parallel with the trend to decommission develop-
ment standards, there is a trend to buy off-the-shelf
products instead of customized or in-house devel-
oped systems. When products may be found in the
marketplace that meet the requirements of cus-
tomers, economy of scale in manufacturing may lead
to substantial cost savings over the cost of custom
development. Even when products are not available
in the market, the trend among large customers, such
as the U.S. Department of Defense and the National
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Aeronautics and Space Administration, is to transfer
the risk of in-house development from the customer
to the contractor. Performance-based contracting is a
tool that allows a customer to issue product specifi-
cations and acceptance criteria, and a supplier to col-
lect a fee for creating the product as specified. Two
significant differences between performance-based
contracting and conventional contracting methods
are:

1. There is very little or no oversight of the con-
tractor by the customer.
2. All risks are borne by the contractor, who is paid

upon delivery of a successful product.
Concurrent Engineering

Concurrent (or simultaneous) engineering is a tech-
nique that addresses the management of total life
cycle time (7,24,26), focusing on the single most
critical resource in a very competitive market: time
to market (or time to deployment). This is accom-
plished primarily by shortening the life cycle
through the realization of three engineering sub-
goals:

1. Introduction of customer evaluation and engi-
neering design feedback during product develop-

ment.

2. A greatly increased rate of focused, detailed tech-
nical interchange among organizational ele-
ments.

3. Development of the product and creation of an

appropriate production process in parallel rather
than in sequence.

Concurrent engineering is a meta-process in which
domain experts from all the departments concerned
with developing a product at any stage of the life
cycle work together as a Concurrent Engineering
(CE) team, integrating all development activities into
one organizational unit. The formation of the team
does not, per se, shorten the engineering life cycle;
however, through early involvement with the CE
team, organizational learning and analysis activities



can be removed from the critical path to market.
There is an explicit tradeoff of manpower for time to
market. That is, the CE team involves more person-
ncl for a greater fraction of the life cycle than in the
case of the waterfall model. Although the CE team
recmains together for a greater percentage of the total
life cycle, the life cycle is significantly shorter than
in traditional models. Consuming a greater portion of
a smaller resource may not increase cost and, in
some cases, may actually decrease cost. However,
the time to market may be greatly reduced. In terms
of the abstract life cycle model, the activities labeled
“recognize,” “analyze,” and “synthesize” can occur
concurrently for all organizational elements involved
in the development of the product. Of course, there
will be some activities that have temporal, as well as
logical, sequential dependence upon other activities
(see Figure 2a and Figure 2b). Marketing, drawing
upon organizational expertise, including RDT&E
products, begins the process through the generation
of an idea of a product, based upon market analysis.
Marketing will generate targets for the selling price
and the production costs of the proposed product to
support management in deciding whether to proceed

with product development. During development, the
CE team work simultaneously with the design team,
to generate in parallel a design for the manufacturing
process.

A CE life cycle model is shown in Figure 3. The
principal feature of this process model is the concur-
rent development of the product, the manufacturing
process, and the manufacturing system through the
continuous participation of the CE team (28). A
notable feature of the life cycle is the absence of a
return path from production to design. This deliber-
ate omission is in recognition of the extremely high
risk of losing market share because of engineering
delays due to design errors.

The organizational response to a change to concur-
rent engineering from traditional methods is likely to
be fraught with difficulty. An organization that has
formed around a particular life cycle model, and that
has experienced a measure of success, perhaps over
a period of many years, will almost certainly resist
change. Effort in several specific areas appears to be
basic to any transition:
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Figure 2a. Waterfall representation of abstract life cycle.
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Figure 2b. The compressing effect of concurrent engineering upon the waterfall model.
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Figure 3. A concurrent engineering life cycle model.

* We have noted that life cycle models are pur-

cycle model. Informal team structures and

poseful, in that they reflect, organize and set
into motion the organizational mission. A
change of life cycle model should be accom-
panied by a clearly stated change of mission
that may be digested, assimilated and rearticu-
lated by all organizational elements — indi-
viduals, formal and informal team structures,
and social groups.

Formal team structures should be examined,
destroyed and rebuilt, replaced or supplement-
ed as necessary to conform to the new life
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individual expectation, such as those
described by Stogdill, may be replicated and
thus preserved by the formal organizational
structure to minimize loss.

Particular attention should be paid to intra-
mural communication and cooperation among
individuals, teams, and departments in the
organization (7). Communication and cooper-
ation are essential elements of concurrency.
Acquisition or improved availability of com-
munications tools, developed through



advances in communications technology, may
reduce the cost and increase the rate of con-
currency.

* Software reengineering for reuse.

Based upon two types of reuse identified by Barnes
and Bollinger (2), it is useful to distinguish between
two different types of software reengineering for
reuse:

1. Software reengineering for maintenance (adap-
tive reusability) improves attributes of existing
software systems, sometimes referred to as lega-
cy systems, that have been correlated to improve-
ments that improve software maintainability (3).

Software reengineering for reuse (compositional
reuse) salvages selected portions of legacy sys-
tems for rehabilitation to enable off-the-shelf
reuse in assembling new applications (1).

Both types of reengineering for reuse share a com-
mon life cycle (20), shown in Figure 4, for reengi-
neering to an object-oriented software architecture.

The life cycle is divided into three successive phas-
es: reengineering concept development, reengineer-
ing product development, and deployment. During
the concept development phase, reengineering is
considered as an alternative to new software devel-
opment. Considerations of scope and level of reengi-
neering allow planning and cost estimation prior to
the development phase.

Reengineering product development proceeds
according to the scope and level of reengineering
planned in the previous phase. Reverse engineering
of the old software is followed by forward engineer-
ing to create a new product. During the reverse engi-
neering stage, products are recreated at the design
and specification levels as needed to recapture
implementation decisions that may have been lost
over the lifetime of the legacy software. During the
entire reverse engineering stage, candidate objects
are repeatedly created, modified or deleted as neces-
sary to provide the basis of an object-oriented design
for the forward engineering stage.

During the forward engineering stage, the candidate
objects from the reverse engineering stage are used
to create an object-oriented specification and design.
Implementation through coding and unit testing
complete the development phase. During the deploy-
ment phase, software integration and testing, fol-
lowed by system integration and testing, allow pro-
duction and deployment to proceed.

Software reengineering is often associated with busi-
ness process reengineering. A recent study (21)
shows that there is a reciprocal relationship between
business process reengineering and software reengi-
neering. The enabling role of information technolo-
gy makes possible the expansion of the activities of
business processes. Moreover, changes in support
software may influence changes in the business
process. In particular, changes in support software
make the software more useful or less useful to a
given business process, so that the business process
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(or, indeed, the software) must adapt. Changes in the
potential for software functionality that are due to
improvements in the technology may enable changes
in business processes, but must not drive them. In
general, successful technology follows, rather than
leads, humans and organizations.

Similarly, changes in the business process create
changes in the requirements for support software.
However, this cause-and-effect relationship between
business process reengineering and software reengi-
neering cannot be generalized and is inherently
unpredictable. Each case requires independent analy-
sis. The effect of business process reengineering on
software may range from common perfective main-
tenance to reconstructive software reengineering.
New software may be required in the event that the
domain has changed substantially. Because the soft-
ware exists to automate business process functions,
the purpose of the support software may be identified
with the functions comprised by the process.
Therefore, reengineering the process at the function
level will in general always require reengineering the
software at the purpose level. This is equivalent to
changing the software requirements. Software
reengineering can be the result of business process
reengineering, or it can be the result of a need to
improve the cost-to-benefit characteristics of the
software. An important example of software reengi-
neering that may have little impact on the business
process is the case of reengineering function-orient-
ed software products into object-oriented products,
thereby choosing the more reactive paradigm to
reduce excessive cost due to poor maintainability.

There are many levels of business process reengi-
neering and of software reengineering, ranging from
re-documentation to using business process reengi-
neering as a form of maintenance. In both there is a
continuum between routine maintenance (minor
engineering) and radical, revolutionary reengineer-
ing. At both ends of the spectrum, change should be
engineered in a proactive, not a reactive manner. As
Sage notes, reengineering “. . . must be top-down
directed if it is to achieve the significant and long-
lasting effects that are possible. Thus, there should
be a strong, purposeful and systems management ori-
entation to reengineering” (25).
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Lowry and Duran (18), in assessing the adequacy of
the waterfall model, cite the lack of adequate support
for incremental development, such as many artificial
intelligence applications. The spiral model is much
more natural, especially as computer-aided software
engineering (CASE) tools shorten the production
cycle for the development of prototypes. In terms of
the spiral model (4), the amount of time needed to
complete one turn of the spiral has been shortened
for many of the turns through the use of CASE tools.
A potentially greater savings can be realized by
reducing the number of turns in the spiral as well as
through the development of knowledge-based tools.
Lowry believes that much of the process of develop-
ing software will be mechanized through the appli-
cation of artificial intelligence technology (17).
Ultimately, the specification-to-design-to-code
process will be replaced by domain-specific specifi-
cation aids that will generate code directly from
specifications. This interesting vision is based upon
much current reality, not only in the CASE arena, but
also in the area of domain-based reuse repositories
(11,16,19). In terms of the life cycle implications, the
waterfall will become shorter, and the spiral will
have fewer turns.
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